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ABSTRACT 

A new recurrent neural network topology for the prediction of time series 
is developed. The back-propagation algorithm to train this network is 
derived. Such a network is called the Prediction Recurrent Artificial Neural 
Network (PRANN). The performance of the PRANN network is analyzed 
for linear and nonlinear time series. Performance comparison to time-delay 
neural networks shows a two-fold increase in performance for the PRANN. 
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L INTRODUCTION 

In recent years, new artificial neural networks (ANNs) for temporal 
processing have been proposed including "recurrent" neural networks that 
have feedback connections. As distinct from the recurrent networks such as 
Hopfield networks which settle into stable states leading to associative 
memory networks, we consider neural networks with recurrent connections 
which allow the processing of time series (Werbos, 1990; Rumelhart et al., 
1986; Williams and Zipser, 1989). 

One of the celebrated problems in time series analysis is that of 
prediction of future values from the knowledge of present and past values. 
A large body of work exists in the case of linear prediction (Makhoul, 1975). 
Neural networks have been employed in the prediction of linear time series 
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(Ukrainec et al., 1989; Connor and Atlas, 1991; Weigend et al., 1992; 
Madhavan et al., 1996). In this article, we propose a multilayer perceptron 
network with recurrent connections and a complete back-propagation 
learning rule for updating the weights of the network. This network is 
developed based on the recurrent network of William & Zipser (1989), 
explicitly incorporating features which allow processing of time series. The 
network has arbitrary dynamics and the back-propagation algorithm is 
derived to minimize the output error using the approach in Haykin (1993). 

Π. DYNAMICS 

The architecture of the PRANN is shown in figure 1 in the training 
mode. There is 1 output node, (1+N) hidden nodes and (1+M+N) input 
nodes of which Μ are external inputs. The nodes are numbered (p,q) such 
that ρ is the layer number and q is the node number in layer, p. Nodes with 
q=0 and 2 are linear nodes; nodes in the hidden layer are non-linear except 
the first. "D" is a delay unit where D[hj(n)] = hj(n-l). The weights, wM

ab 
connect from layer a, node b to layer p, node q. 

(yjn-1)] 

Fig. 1: Recurrent ANN; d(n-l) replaced by yo(n-l) during testing. 
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y0(») = 

e0(n) = d(n) - y0(n) 

hj(n) = ^[vj(n)] 

where φ is the sigmoidal operator and φ^=1 if j=0. 

ψ ) = Σ > > Κ ( » ) 
ρ-1 
Σ 
k=0 

where P=l+M+N 

uk(ri) 
d(n-1) fork-0; u0(n)=y0(n-\) during testing 

x(n) for ke [external inputsJ=l,...,M] 
h(n-l) forke[hidden layerfeedbackj=l,...,N] 

(1) 

(2) 

(3) 

(4) 

(5) 

Equations (1), (3), (4) and (5) define the entire dynamics of our recurrent 
ANN. 

ΠΙ. LEARNING RULE 

The objective of our recurrent ANN is to minimize the total error 
function, 

E(0( = Σ E("); "where E(n) = and eQ(n) = d(n) - y0(n) 
π 

We utilize the method of steepest descent, which requires the knowledge 
of the following gradient with respect to synaptic weights, w. 

Κ Κ , - ^ - Σ ^ - Σ VWE(*) (6) 
dw „ dw „ 

To develop an algorithm that can learn to minimize Etot in real time, we 
use VwE(n) instead of VwEtot as an approximation to the method of steepest 
descent. Therefore, using this instantaneous estimate, the incremental 
weight change for a weight w\i(n) can be written as 
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ΘΕ(») = θ 

dw'^ri) dw'tfji) 

= ' Φ ) 

f o V ) 

dy0(.») 

dw&ri) 

Aw fan) = - η VWE(«) 

3Ε(/ι) 
= - η 

d w > ) 

(7) 

(8) 

where equation (2) was used. 

We will develop the update equations for output node weights and 

hidden node weights separately. First consider the output node weights, 
20 

W ,j. 

Output Node Weight Update 

From equation (8), we have to develop an expression for the partial 

derivative of yO(n) with respect to w201j(n). From equation (1), 

dy0(") 

dw™(n) dwy(ri) 
" > ) Κ(») - Σ <(P) hk{n-\) 

k-\ 
(9) 

Consider the 2 terms on the RHS of equation (9) separately. The first term, 

dw™(n) 
w i a ( n ) V " ) = ho(") 

dw^(zz) 

dwy(n) 

20, , 
w i o ( " ) 

dhJri) 

dw™(n) 

= δ;ο Λο(") + w i o W 
dh0(n) 

dw™(n) 

(10) 

The term, aw20io(n)/5w20ij(n) = 1 when j = 0 and equal to 0 for j * 0. This is 

indicated by the Kronecker delta, 5j0 which is equal to 1 for j = 0 and zero 

otherwise. The second term on the RHS of equation (9) can be simplified 

using the derivative of product rule as before to give the following 

expression. 

dw™(n) 
Σ w i k ( " ) V - 1 ) 
k-1 

Ν 

- Σ 
1 

e ι , n 20, , dhk(n-\) 
bJkhk(n-\)+wlk(r,) 

öw„ (n) 
(11) 
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Combining equations (9), (10) and (11), we get 

dy0(r>) . . . . jo ν dho(") 
= δ ; 0 h0(n) + wlQ(n) 

dw™{ri) 
Ν 

+Σ Jk=l 
μ dhJn-l) 

W " ) + 

dwly (w) 

(12) 

We can substitute for the partial derivatives of hk(n-l) by applying the chain 
rule of derivatives to equation (3). Rewriting equation (3), hj(n) = <|>j[vj(n)] 
where φ̂  = 1 if j = 0, the partial derivative 

dh(n) dhjjn) dVj(n) θ ν ( » ) 

* r > ) ' a v / n ) d w » ( a ) ' > " d w ™ ( n ) 

(13) 

The last partial derivative is non-zero because of feedback. From equation 
(4), we know, 

A1+N 
= Σ wo!(")»,(*) 

1=0 

dv^n) 

dw™(ri) 
Σ 1=0 
Ν 

- Σ 
/ = ! 

aw.f(n) 
+ WofcO 

η-, 0 (/»λ/)1 
3Α,(#ι-1) 

5«,(π) 
(14) 

The simplification of equation (14) makes use of the following :- (i) the 
assumption that weights at different layers are not functions of each other 
and hence dw'^nySw^ijin) = 0 and (ii) as seen from equation (5), (1+M) 
elements of u;(n) are d(n-l) and xj(n) (desired response and external inputs 
respectively), which are not functions of weights. Therefore, only elements 
left in equation (14) are those corresponding to the delayed feedback inputs 
from the hidden layer, hi(n-l), which are functions of weights due to 
feedback and small step size. 

We will substitute equation (14) in (13) and employ the following 
notation for compactness. 
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dhXri) 
n /"> = - i r r dwy (n) 

Π («) = φ·(») Σ Π,(/ι-1) ( 1 5 ) 
1 = 1 

Note that for j = 0, φ'j(n) = 1 and that rij(0) = random since the network 
initial state (hidden layer node outputs) dependence on weights is unknown. 
Using equation (15) in (12), we get, 

dyoW S U , X \ TT / \ - — = δ 0 h0(n) + wt0(n) Π0(/ι) 
dwy (η) 

N r ι (16> 
+ Σ - η-,2>)Π(Μ-1)] 

Using equation (16) in equations (7) and (8), 

A w , > ) = η e0(n) [ bj0 h0(n) + w > ) Π0(/»)] 

+ η e0(n) f [ ö ; A ( " ) + *£ (» ) Π/»-1)] 

Hidden Node Weight Update 

Similar to equation (9), we develop the expression for the partial 
derivative of y0(n) with respect to, in this case, wlj

ok(n). From equation (1), 

Αο(") + Σ w u( " ) 
i-l 

(17) 

Using the derivative of product rule and using the assumption that weights 
in one layer are not functionally dependent on weights in another, we can 
simplify equation (17) as follows. 

dy0(n) 20. , dh
0(") 

S^oii") 
Ν 

+ Σ / = 1 
20, d h f r - l ) 

"l, («) 
a ^ ( n ) 

(18) 
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Similar to equations (13), we have 

dhjjn) _ dhjW dv(n) 

dw*W d V j ( n ) d w y ( n ) 

But from equation (4), we know, 

M+N 
ψ ) = Σ w o / ( " ) φ ) 

Φ'/») 
a ν, (Ό 

dwafcn) 
(19) 

3 ν / » ) _ ^ 

dw^ri) 
M+N Ν 

= £ δ„Μ;(η) + £ 
b 0 m= I 

17, χ + w ) — — -
dw&ft) 

v dhJn-X) 
W0<m»A/)(n) 

dw0i(n) 

(20) 

Here, we have made use of the fact that the desired response and external 
inputs are not functionally dependent on weights. Using equation (20) in 
(19) and the following notation, 

dWo'ki") 

we can write, 

= Φ'(«) Σ &k,«f») - Σ ω>-Ι) 
ο m-1 

(21) 

Note that for j = 0, <j>'j(n) = 1 and that Ω/0) = random since the network 
initial state (hidden layer node outputs) dependence on weights is unknown. 
Then, we can rewrite equation (18) as follows. 

dwol(n) 
ioV) - Σ 

ί = 1 J (22) 

Using equation (22) in equations (7) and (8), 

Aw&n) = η eQ(n) „,»(„) Q°k(n) + Σ 
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IV. ALGORITHM 

There are Μ external inputs and Ν non-linear nodes in the hidden layer. 

Forward calculations:-

u.(n) = 

d(n-1) fork=0; u0(n) =γ0(η-1) during testing 
Xj(n) for k e [external inputs ,j = 1, ...,M] 

hj(n-1) forke [hiddenlayerfeedback J =\, ...,N] (A) 

ρ-1 
v(ri) = )uk(n) where P=\+M+N (B) 

k=ο 

hj(n) = φ̂  [Vj(n>] where φ is the sigmoidal operator and 
hj(n) = Vj(n) for j = 0 (C) 

y0(") = (D) 
J·' 

Learning procedure:-

1. Initialization: For η < 0, d(n)=Xj(n)=hj(n)=0 for all j; 
Qj(n)= ITj(n)=wijki(0) = uniformly distributed random numbers for all ij,k,l. 

2. For each time step, η -
eo(n) = d(n)-y o(n) (E) 

For j = 0 to N, 

Ν 
Π Μ = φ'; (η) Σ Π , ^ - 1 ) < (F) 

for j = 0, φ',(η) = 1; for j * 0, φ » = hj(n)[l - hj(n)]. 

For j = 0 to Ν, 

M,V°("+1) = + η Φ ) [ δ 0 hQ(n) • w™(n) Π0(/ι>] (G) 

^ eo(") Σ Κ Α ^ 1 ) + wik(") π («-1)1 
*=1 1 1 
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and δρς = 1 for ρ = q and zero otherwise. 

For j = 0 to Ν AND k = 0 to M+N, 

Ν (Η) 
Ωί(«) = Φ' /Ό Σ + Σ QL(»-i) 

1=0 m = l 1=0 

for j = 0, <|>'j(n) = 1; for j * 0, φ'(η) = hj(n)[l - h/n)]. 

For j = 0 to Ν AND k = 0 to M+N, 

o*("+D = + η Φ ) w l > ) + Σ w i V ) ^ ( » - ο ω 

V. TIME SERIES PREDICTION 

To utilize the recurrent ANN of figure 1 for the prediction of time series, 
u(n), during training, we set d(n) = u(n) and xi(n) = u(n-l). Then, y0(n) is 
the 1-step-ahead prediction of u(n). The network in figure 1 with this 
training regime will be called the "Prediction Recurrent Artificial Neural 
Network" (PRANN)· 

The transversal filter structure traditionally employed for time series 
prediction (Makhoul, 1975) is shown in figure 2. The one-step forward 
prediction problem is to predict the value of u(n) given Μ previous samples 
of u(n), where Μ is the order of the predictor. The measure of performance 
of the predictor is reflected in the variance of the prediction error, fM(n), 
after convergence. When the prediction is done using non-recurrent ANNs, 
the tapped-delay line outputs are connected to the input nodes of the ANN. 
Such neural network predictors are called Time Delay Neural Networks 
(TDNNs). 

,Φ-1) f 
ü(n) T a p p e d 

Delay 
Line 

Predictor 
of order 

Μ 

u(n) 
'u(n-M) 

Fig. 2: Prediction error filter block diagram. 
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The performance of the PRANN and TDNN predictor structures will be 

examined for two different time series models: a linear auto-regressive 

model and a nonlinear Volterra model. It should be noted that the specific 

models chosen are for illustration purposes only and that similar results 

could be obtained with different models. In each case, the optimal predictor 

for the time series model can be found from solving the conditional 

expectation, 

u(n) = £I«(rt|n-l , n-2, ...)]. (23) 

The linear time series model investigated was a second-order auto-

regressive random process, given as, 

u(n) = 0.804m(/ i-1) - 0 .18u(n-2) + w(n), (24) 

where w(n) is a zero mean, unit variance white Gaussian noise process. The 
optimal predictor of this time series can be found from (23), 

u(n) = £ [0 .804 u (Λ-1) - 0.18Μ(Λ-2) + w(")] (25) 
= 0 .804 μ(Π-1) - 0.18 «( / ι -2) 

The prediction error variance obtained when the optimal predictor is 
employed can be shown to be the variance of the underlying white noise 
process, w(n). Ideally, the two neural network predictors should be 
compared upon the amount of training required to reach this value. In 
practice, due to misadjustment, the amount of training required to reach the 
point where the convergence plot stabilizes will be the basis for comparison. 

The PRANN used had 1 external input only, i.e., Xi(n) = u(n-l) and 2 
hidden layer non-linear nodes. The TDNN had 3 input nodes and 1 hidden 
layer with 7 nodes. The learning rates in both cases were 0.0001. The 
learning curves, showing the mean squared prediction error versus the 
number of iterations, are shown in figure 3, with the solid line representing 
the PRANN and the dotted line representing the TDNN. The PRANN 
converges to a lower prediction error of 0.6 compared to 0.82 for the TDNN 
predictor. The minimum prediction error is reached in approximately 3000 
iterations for the PRANN whereas the TDNN takes up to 6000 iterations. 

The Volterra nonlinear time series model was investigated next. The 
Volterra time series [6] provides a general expression for the relationship 
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Fig. 3: Learning curve for linear time series; solid - PRANN; dotted -
TDNN. 

between the input and output of a nonlinear system, given below as, 

Φ) = Σ a(i) w(n -/") + £ £ a(ij) w(n -/) w(n -j) + (26) 
i-O i-0 jm0 

where w(n) is a zero mean, unit variance white Gaussian noise process and 
a(i), a(ij), etc., represent the kernels of the nonlinear system. In this paper, 
the following model is used, 

u(n) = w(n) + Ω w(/i-l)w(n-2), (27) 

where α is a constant chosen to be -0.75. This model can exhibit higher 
order behavior yet remain mathematically tractable. To illustrate, consider 
the optimal predictor of u(n), found by solving the conditional expectation in 
(23). 

«(«) = E[M.n) + Ω ^ - 1 ) ^ / 7 - 2 ) ] „ 
= Ω w(n-l)w(n-2) ( ' 

As can be seen, the optimal predictor is a cross-term between the delayed 
values of w(n). To express this result in terms of delayed samples of u(n) 
would require inversion of (27) and is a very difficult problem. 
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Given that the input process, w(n), was zero mean, the mean of the 
output process, u(n), is identically zero and the variance of the process can 
be shown [7] to be, 

σ* = σ * + Ω 2 σ 1 , (29) 

where aw
2 is the variance of the white noise process. The prediction error 

variance obtained when this optimal predictor is employed will again be the 
variance of the white noise process. The neural network predictors will be 
compared below. 

The PRANN used had 1 external input only, i.e., Xi(n) = u(n-l) and 7 
hidden layer non-linear nodes. The TDNN had 3 input nodes and 1 hidden 
layer with 7 nodes. The learning rates in both cases were 0.0001. The 
learning curves are shown in figure 4, with the solid line representing the 
PRANN and the dotted line representing the TDNN. The PRANN and the 
TDNN predictors converge to a prediction error of 1.15. The minimum 
prediction error is reached in approximately 3000 iterations for the PRANN 
where as the TDNN takes up to 5000 iterations. 

Fig. 4: Learning curve for nonlinear time series; solid - PRANN; dotted 
-TDNN. 
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VL CONCLUSIONS 

The PRANN has a specific network topology characterized by linear 
output node and one linear hidden layer node in addition to a structure 
similar to the recurrent neural network of William and Zipser (1989). We 
derived a back-propagation training algorithm for this network. Recasting 
the network proposed by William and Zipser (1989) into a topology similar 
to ours, it can be shown that they do not update weights connecting the 
nonlinear hidden layer nodes to the output node. Therefore, the PRANN 
can be seen as recurrent ANN specifically designed for time series 
processing with complete weight update. 

The performance of the PRANN in comparison to the traditional TD NN 
shows that both in the linear and nonlinear time series case, the performance 
of the PRANN is superior. In the case of autoregressive models such as in 
equation (29), the output feedback allows delayed time series values to be 
represented internally to form the optimal predictor. The major limitation of 
the TDNN architecture is that it does not allow for the explicit 
representation of the past values. The uses of PRANN for a wide variety of 
time series models such as the bilinear and the soft threshold autoregressive 
models are currently being developed. 
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