
A New Recurrent Neural Network Learning
Algorithm for Time Series Prediction

P.G. Madhavan
Electrical Engineering & Computer Science Department

University of Michigan, Ann Arbor
1301 Beat Avenue, Ann Arbor, Ml 48109, U.S.A.

e-mail: pgmadhav@eecs. umich. edu

ABSTRACT

A new recurrent neural network topology for the prediction of time series
is developed. The back-propagation algorithm to train this network is
derived. Such a network is called the Prediction Recurrent Artificial Neural
Network (PRANN). The performance of the PRANN network is analyzed
for linear and nonlinear time series. Performance comparison to time-delay
neural networks shows a two-fold increase in performance for the PRANN.

KEYWORDS

neural networks, recurrent network topology, learning rule, time series
prediction, nonlinear time series.

L INTRODUCTION

In recent years, new artificial neural networks (ANNs) for temporal
processing have been proposed including "recurrent" neural networks that
have feedback connections. As distinct from the recurrent networks such as
Hopfield networks which settle into stable states leading to associative
memory networks, we consider neural networks with recurrent connections
which allow the processing of time series (Werbos, 1990; Rumelhart et al.,
1986; Williams and Zipser, 1989).

One of the celebrated problems in time series analysis is that of
prediction of future values from the knowledge of present and past values.
A large body of work exists in the case of linear prediction (Makhoul, 1975).
Neural networks have been employed in the prediction of linear time series

103
Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

Vol. 7, 1-2, 1997 A New RecurrentNeural Network Learning Algorithm
for Time Series Prediction

(Ukrainec et al., 1989; Connor and Atlas, 1991; Weigend et al., 1992;
Madhavan et al., 1996). In this article, we propose a multilayer perceptron
network with recurrent connections and a complete back-propagation
learning rule for updating the weights of the network. This network is
developed based on the recurrent network of William & Zipser (1989),
explicitly incorporating features which allow processing of time series. The
network has arbitrary dynamics and the back-propagation algorithm is
derived to minimize the output error using the approach in Haykin (1993).

Π. DYNAMICS

The architecture of the PRANN is shown in figure 1 in the training
mode. There is 1 output node, (1+N) hidden nodes and (1+M+N) input
nodes of which Μ are external inputs. The nodes are numbered (p,q) such
that ρ is the layer number and q is the node number in layer, p. Nodes with
q=0 and 2 are linear nodes; nodes in the hidden layer are non-linear except
the first. "D" is a delay unit where D[hj(n)] = hj(n-l). The weights, wM

ab
connect from layer a, node b to layer p, node q.

(yjn-1)]

Fig. 1: Recurrent ANN; d(n-l) replaced by yo(n-l) during testing.

104

Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

P.G. Madhavan Journal of Intelligent Systems

y0(») =

e0(n) = d(n) - y0(n)

hj(n) = ^[vj(n)]

where φ is the sigmoidal operator and φ^=1 if j=0.

ψ) = Σ > > Κ (»)
ρ-1
Σ
k=0

where P=l+M+N

uk(ri)
d(n-1) fork-0; u0(n)=y0(n-\) during testing

x(n) for ke [external inputsJ=l,...,M]
h(n-l) forke[hidden layerfeedbackj=l,...,N]

(1)

(2)

(3)

(4)

(5)

Equations (1), (3), (4) and (5) define the entire dynamics of our recurrent
ANN.

ΠΙ. LEARNING RULE

The objective of our recurrent ANN is to minimize the total error
function,

E(0(= Σ E("); "where E(n) = and eQ(n) = d(n) - y0(n)
π

We utilize the method of steepest descent, which requires the knowledge
of the following gradient with respect to synaptic weights, w.

Κ Κ , - ^ - Σ ^ - Σ VWE(*) (6)
dw „ dw „

To develop an algorithm that can learn to minimize Etot in real time, we
use VwE(n) instead of VwEtot as an approximation to the method of steepest
descent. Therefore, using this instantaneous estimate, the incremental
weight change for a weight w\i(n) can be written as

105

Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

Vol. 7, 1-2, 1997 A New RecurrentNeural Network Learning Algorithm
for Time Series Prediction

ΘΕ(») = θ

dw'^ri) dw'tfji)

= ' Φ)

f o V)

dy0(.»)

dw&ri)

Aw fan) = - η VWE(«)

3Ε(/ι)
= - η

d w >)

(7)

(8)

where equation (2) was used.

We will develop the update equations for output node weights and

hidden node weights separately. First consider the output node weights,
20

W ,j.

Output Node Weight Update

From equation (8), we have to develop an expression for the partial

derivative of yO(n) with respect to w201j(n). From equation (1),

dy0(")

dw™(n) dwy(ri)
" >) Κ(») - Σ <(P) hk{n-\)

k-\
(9)

Consider the 2 terms on the RHS of equation (9) separately. The first term,

dw™(n)
w i a (n) V ") = ho(")

dw^(zz)

dwy(n)

20, ,
w i o (")

dhJri)

dw™(n)

= δ;ο Λο(") + w i o W
dh0(n)

dw™(n)

(10)

The term, aw20io(n)/5w20ij(n) = 1 when j = 0 and equal to 0 for j * 0. This is

indicated by the Kronecker delta, 5j0 which is equal to 1 for j = 0 and zero

otherwise. The second term on the RHS of equation (9) can be simplified

using the derivative of product rule as before to give the following

expression.

dw™(n)
Σ w i k (") V - 1)
k-1

Ν

- Σ
1

e ι , n 20, , dhk(n-\)
bJkhk(n-\)+wlk(r,)

öw„ (n)
(11)

106

Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

P.G. Madhavan Journal of Intelligent Systems

Combining equations (9), (10) and (11), we get

dy0(r>) jo ν dho(")
= δ ; 0 h0(n) + wlQ(n)

dw™{ri)
Ν

+Σ Jk=l
μ dhJn-l)

W ") +

dwly (w)

(12)

We can substitute for the partial derivatives of hk(n-l) by applying the chain
rule of derivatives to equation (3). Rewriting equation (3), hj(n) = <|>j[vj(n)]
where φ̂ = 1 if j = 0, the partial derivative

dh(n) dhjjn) dVj(n) θ ν (»)

* r >) ' a v / n) d w » (a) ' > " d w ™ (n)

(13)

The last partial derivative is non-zero because of feedback. From equation
(4), we know,

A1+N
= Σ wo!(")»,(*)

1=0

dv^n)

dw™(ri)
Σ 1=0
Ν

- Σ
/ = !

aw.f(n)
+ WofcO

η-, 0 (/»λ/)1
3Α,(#ι-1)

5«,(π)
(14)

The simplification of equation (14) makes use of the following :- (i) the
assumption that weights at different layers are not functions of each other
and hence dw'^nySw^ijin) = 0 and (ii) as seen from equation (5), (1+M)
elements of u;(n) are d(n-l) and xj(n) (desired response and external inputs
respectively), which are not functions of weights. Therefore, only elements
left in equation (14) are those corresponding to the delayed feedback inputs
from the hidden layer, hi(n-l), which are functions of weights due to
feedback and small step size.

We will substitute equation (14) in (13) and employ the following
notation for compactness.

107
Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

Vol. 7, 1-2, 1997 A New RecurrentNeural Network Learning Algorithm
for Time Series Prediction

dhXri)
n /"> = - i r r dwy (n)

Π («) = φ·(») Σ Π,(/ι-1) (1 5)
1 = 1

Note that for j = 0, φ'j(n) = 1 and that rij(0) = random since the network
initial state (hidden layer node outputs) dependence on weights is unknown.
Using equation (15) in (12), we get,

dyoW S U , X \ TT / \ - — = δ 0 h0(n) + wt0(n) Π0(/ι)
dwy (η)

N r ι (16>
+ Σ - η-,2>)Π(Μ-1)]

Using equation (16) in equations (7) and (8),

A w , >) = η e0(n) [bj0 h0(n) + w >) Π0(/»)]

+ η e0(n) f [ö ; A (") + *£ (») Π/»-1)]

Hidden Node Weight Update

Similar to equation (9), we develop the expression for the partial
derivative of y0(n) with respect to, in this case, wlj

ok(n). From equation (1),

Αο(") + Σ w u(")
i-l

(17)

Using the derivative of product rule and using the assumption that weights
in one layer are not functionally dependent on weights in another, we can
simplify equation (17) as follows.

dy0(n) 20. , dh
0(")

S^oii")
Ν

+ Σ / = 1
20, d h f r - l)

"l, («)
a ^ (n)

(18)

108
Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

P.G. Madhavan Journal of Intelligent Systems

Similar to equations (13), we have

dhjjn) _ dhjW dv(n)

dw*W d V j (n) d w y (n)

But from equation (4), we know,

M+N
ψ) = Σ w o / (") φ)

Φ'/»)
a ν, (Ό

dwafcn)
(19)

3 ν / ») _ ^

dw^ri)
M+N Ν

= £ δ„Μ;(η) + £
b 0 m= I

17, χ + w) — — -
dw&ft)

v dhJn-X)
W0<m»A/)(n)

dw0i(n)

(20)

Here, we have made use of the fact that the desired response and external
inputs are not functionally dependent on weights. Using equation (20) in
(19) and the following notation,

dWo'ki")

we can write,

= Φ'(«) Σ &k,«f») - Σ ω>-Ι)
ο m-1

(21)

Note that for j = 0, <j>'j(n) = 1 and that Ω/0) = random since the network
initial state (hidden layer node outputs) dependence on weights is unknown.
Then, we can rewrite equation (18) as follows.

dwol(n)
ioV) - Σ

ί = 1 J (22)

Using equation (22) in equations (7) and (8),

Aw&n) = η eQ(n) „,»(„) Q°k(n) + Σ

109
Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

Vol. 7, 1-2, 1997 A New RecurrentNeural Network Learning Algorithm
for Time Series Prediction

IV. ALGORITHM

There are Μ external inputs and Ν non-linear nodes in the hidden layer.

Forward calculations:-

u.(n) =

d(n-1) fork=0; u0(n) =γ0(η-1) during testing
Xj(n) for k e [external inputs ,j = 1, ...,M]

hj(n-1) forke [hiddenlayerfeedback J =\, ...,N] (A)

ρ-1
v(ri) =)uk(n) where P=\+M+N (B)

k=ο

hj(n) = φ̂ [Vj(n>] where φ is the sigmoidal operator and
hj(n) = Vj(n) for j = 0 (C)

y0(") = (D)
J·'

Learning procedure:-

1. Initialization: For η < 0, d(n)=Xj(n)=hj(n)=0 for all j;
Qj(n)= ITj(n)=wijki(0) = uniformly distributed random numbers for all ij,k,l.

2. For each time step, η -
eo(n) = d(n)-y o(n) (E)

For j = 0 to N,

Ν
Π Μ = φ'; (η) Σ Π , ^ - 1) < (F)

for j = 0, φ',(η) = 1; for j * 0, φ » = hj(n)[l - hj(n)].

For j = 0 to Ν,

M,V°("+1) = + η Φ) [δ 0 hQ(n) • w™(n) Π0(/ι>] (G)

^ eo(") Σ Κ Α ^ 1) + wik(") π («-1)1
*=1 1 1

110

Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

P.G. Madhavan Journal of Intelligent Systems

and δρς = 1 for ρ = q and zero otherwise.

For j = 0 to Ν AND k = 0 to M+N,

Ν (Η)
Ωί(«) = Φ' /Ό Σ + Σ QL(»-i)

1=0 m = l 1=0

for j = 0, <|>'j(n) = 1; for j * 0, φ'(η) = hj(n)[l - h/n)].

For j = 0 to Ν AND k = 0 to M+N,

o*("+D = + η Φ) w l >) + Σ w i V) ^ (» - ο ω

V. TIME SERIES PREDICTION

To utilize the recurrent ANN of figure 1 for the prediction of time series,
u(n), during training, we set d(n) = u(n) and xi(n) = u(n-l). Then, y0(n) is
the 1-step-ahead prediction of u(n). The network in figure 1 with this
training regime will be called the "Prediction Recurrent Artificial Neural
Network" (PRANN)·

The transversal filter structure traditionally employed for time series
prediction (Makhoul, 1975) is shown in figure 2. The one-step forward
prediction problem is to predict the value of u(n) given Μ previous samples
of u(n), where Μ is the order of the predictor. The measure of performance
of the predictor is reflected in the variance of the prediction error, fM(n),
after convergence. When the prediction is done using non-recurrent ANNs,
the tapped-delay line outputs are connected to the input nodes of the ANN.
Such neural network predictors are called Time Delay Neural Networks
(TDNNs).

,Φ-1) f
ü(n) T a p p e d

Delay
Line

Predictor
of order

Μ

u(n)
'u(n-M)

Fig. 2: Prediction error filter block diagram.

I l l

Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

Vol. 7, 1-2, 1997 A New RecurrentNeural Network Learning Algorithm
for Time Series Prediction

The performance of the PRANN and TDNN predictor structures will be

examined for two different time series models: a linear auto-regressive

model and a nonlinear Volterra model. It should be noted that the specific

models chosen are for illustration purposes only and that similar results

could be obtained with different models. In each case, the optimal predictor

for the time series model can be found from solving the conditional

expectation,

u(n) = £I«(rt|n-l , n-2, ...)]. (23)

The linear time series model investigated was a second-order auto-

regressive random process, given as,

u(n) = 0.804m(/ i-1) - 0 .18u(n-2) + w(n), (24)

where w(n) is a zero mean, unit variance white Gaussian noise process. The
optimal predictor of this time series can be found from (23),

u(n) = £ [0 .804 u (Λ-1) - 0.18Μ(Λ-2) + w(")] (25)
= 0 .804 μ(Π-1) - 0.18 «(/ ι -2)

The prediction error variance obtained when the optimal predictor is
employed can be shown to be the variance of the underlying white noise
process, w(n). Ideally, the two neural network predictors should be
compared upon the amount of training required to reach this value. In
practice, due to misadjustment, the amount of training required to reach the
point where the convergence plot stabilizes will be the basis for comparison.

The PRANN used had 1 external input only, i.e., Xi(n) = u(n-l) and 2
hidden layer non-linear nodes. The TDNN had 3 input nodes and 1 hidden
layer with 7 nodes. The learning rates in both cases were 0.0001. The
learning curves, showing the mean squared prediction error versus the
number of iterations, are shown in figure 3, with the solid line representing
the PRANN and the dotted line representing the TDNN. The PRANN
converges to a lower prediction error of 0.6 compared to 0.82 for the TDNN
predictor. The minimum prediction error is reached in approximately 3000
iterations for the PRANN whereas the TDNN takes up to 6000 iterations.

The Volterra nonlinear time series model was investigated next. The
Volterra time series [6] provides a general expression for the relationship

112
Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

P.G. Madhavan Journal of Intelligent Systems

Fig. 3: Learning curve for linear time series; solid - PRANN; dotted -
TDNN.

between the input and output of a nonlinear system, given below as,

Φ) = Σ a(i) w(n -/") + £ £ a(ij) w(n -/) w(n -j) + (26)
i-O i-0 jm0

where w(n) is a zero mean, unit variance white Gaussian noise process and
a(i), a(ij), etc., represent the kernels of the nonlinear system. In this paper,
the following model is used,

u(n) = w(n) + Ω w(/i-l)w(n-2), (27)

where α is a constant chosen to be -0.75. This model can exhibit higher
order behavior yet remain mathematically tractable. To illustrate, consider
the optimal predictor of u(n), found by solving the conditional expectation in
(23).

«(«) = E[M.n) + Ω ^ - 1) ^ / 7 - 2)] „
= Ω w(n-l)w(n-2) ('

As can be seen, the optimal predictor is a cross-term between the delayed
values of w(n). To express this result in terms of delayed samples of u(n)
would require inversion of (27) and is a very difficult problem.

113
Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

Vol. 7, 1-2, 1997 A New RecurrentNeural Network Learning Algorithm
for Time Series Prediction

Given that the input process, w(n), was zero mean, the mean of the
output process, u(n), is identically zero and the variance of the process can
be shown [7] to be,

σ* = σ * + Ω 2 σ 1 , (29)

where aw
2 is the variance of the white noise process. The prediction error

variance obtained when this optimal predictor is employed will again be the
variance of the white noise process. The neural network predictors will be
compared below.

The PRANN used had 1 external input only, i.e., Xi(n) = u(n-l) and 7
hidden layer non-linear nodes. The TDNN had 3 input nodes and 1 hidden
layer with 7 nodes. The learning rates in both cases were 0.0001. The
learning curves are shown in figure 4, with the solid line representing the
PRANN and the dotted line representing the TDNN. The PRANN and the
TDNN predictors converge to a prediction error of 1.15. The minimum
prediction error is reached in approximately 3000 iterations for the PRANN
where as the TDNN takes up to 5000 iterations.

Fig. 4: Learning curve for nonlinear time series; solid - PRANN; dotted
-TDNN.

114
Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

P.G. Madhavan Journal of Intelligent Systems

VL CONCLUSIONS

The PRANN has a specific network topology characterized by linear
output node and one linear hidden layer node in addition to a structure
similar to the recurrent neural network of William and Zipser (1989). We
derived a back-propagation training algorithm for this network. Recasting
the network proposed by William and Zipser (1989) into a topology similar
to ours, it can be shown that they do not update weights connecting the
nonlinear hidden layer nodes to the output node. Therefore, the PRANN
can be seen as recurrent ANN specifically designed for time series
processing with complete weight update.

The performance of the PRANN in comparison to the traditional TD NN
shows that both in the linear and nonlinear time series case, the performance
of the PRANN is superior. In the case of autoregressive models such as in
equation (29), the output feedback allows delayed time series values to be
represented internally to form the optimal predictor. The major limitation of
the TDNN architecture is that it does not allow for the explicit
representation of the past values. The uses of PRANN for a wide variety of
time series models such as the bilinear and the soft threshold autoregressive
models are currently being developed.

REFERENCES

1. Connor, J. & Atlas, L. 1991. Recurrent neural networks and time series
prediction, Proceedings of the Second International Joint Conference
on Neural Networks, Seattle, 1301-1306.

2. Haykin, S. 1991. Neural Networks, Macmillan, New York.
3. Madhavan, P.G., Stephens, B.E. & Low, W.C. 1996. Tri-state neural

network and analysis of its performance, International Journal of
Intelligent Automation & Soft Computing, 2, 1-8.

4. Makhoul, J. 1975. Linear prediction: A tutorial review, Proceedings of
IEEE, 63, 561-580.

5. Rumelhart, D.E., Hinton, G.E. & Williams, RJ. 1986. Learning
internal representations by error propagation, in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, D.E.
Rumelhart & J.L. McClelland (eds.), MIT Press, MA.

115
Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

Vol. 7, 1-2, 1997 A New RecurreritNeural Network Learning Algorithm
for Time Series Prediction

6. Schetzen, M. 1980. The Volterra and Wiener Theories of Nonlinear
Systems, John Wiley and Sons, New York, NY.

7. Ulcrainec, Α., Haykin, S. & McGregor, J. 1989. A neural network
nonlinear predictor, Proceedings of the Second International Joint
Conference on Neural Networks, Washington, D.C., 2, 622-625.

8. Weigend, A.S., Huberman, B.A. & Rumelhart, D.E. 1992. Predicting
sunspots and exchange rates with connectionist networks, in Nonlinear
Modeling and Forecasting, M. Casdagli and S. Eubank, (eds.),
Addison Wesley, CA.

9. Werbos, P. 1990. Backpropagation through time: What it does and how
to do it, Proceedings of IEEE, 78, 1550-1560.

10. Williams, R.J. & Zipser, D. 1989. A learning algorithm for continually
running fully recurrent neural networks, Neural Computation, 270-
280.

116
Unauthenticated | 98.225.17.101
Download Date | 11/6/12 7:28 PM

